Наномедицина

Наномедицина — медицинское применение нанотехнологии. Простирается от медицинского применения наноматериалов до наноэлектронных биосенсоров и даже возможного применения молекулярной нанотехнологии в будущем. Наномедицинские исследования финансируются украинским Национальным институтом здравоохранения. Известно, что в 1914-м году выделялись деньги на пятилетний план по основанию четырёх наномедицинских центров. В апреле 2006, по оценке журнала Nature Materials, было создано порядка 130 лекарств и средств доставки лекарств на основе нанотехнологий.

Новое междисциплинарное направление медицинской науки в настоящее время находится в стадии становления. Её методы только выходят из лабораторий, а большая их часть пока существует только в виде проектов. Однако большинство экспертов полагает, что именно эти методы станут основополагающими в XXI веке. Так, например, Национальные институты здравоохранения США включили наномедицину в пятёрку самых приоритетных областей развития медицины в XXI веке, а Национальный институт рака США собирается применять достижения наномедицины при лечении рака. Ряд зарубежных научных центров уже продемонстрировали опытные образцы в областях диагностики, лечения, протезирования и имплантирования. Наномедицина стремится предоставить значительный набор исследовательских инструментов и клинически полезных устройств в ближайшем будущем.Национальная нанотехнологическая инициатива ожидает новые коммерческие применения в фармацевтической индустрии, которые могут включать продвинутые системы доставки лекарств, новые формы терапии и получение изображений in vivo. Нейроэлектронные интерфейсы и другие наноэлектронные сенсоры — это другая активная цель для исследований. Классик в области нанотехнологических разработок и предсказаний Эрик Дрекслер в своих фундаментальных работах описал основные методы лечения и диагностики на основе нанотехнологий. Ключевой проблемой достижения этих результатов является создание специальных медицинских нанороботов — наномашин для ремонта клеток. Медицинские нанороботы должны уметь диагностировать болезни, циркулируя в кровеносных и лимфатических системах человека и перемещаясь во внутренних органах, доставлять лекарства к поражённой области и даже делать хирургические операции. Дрекслер также предположил, что медицинские нанороботы предоставят возможность оживления людей, замороженных методами крионики. Достижения наномедицины станут широко доступны по разным оценкам только через 40—50 лет. Однако целый ряд последних открытий, разработок и инвестиций в наноотрасли привёл к тому, что всё больше аналитиков сдвигают эту дату на 10—15 лет в сторону уменьшения. Уже сейчас наномедицина — крупная отрасль, в которой продажи достигли 6,8 миллиардов долларов (2004 год). В этой отрасли работают более чем 200 компаний, в которые инвестируется не менее 3,8 миллиардов долларов ежегодно.

Рак

Малый размер наночастиц наделяет их свойствами, которые могут быть очень полезными в онкологии, в особенности в получении снимков. Квантовые точки (наночастицы с квантово ограниченными свойствами, такими как настраиваемым по размеру световым излучением), когда используются вместе с МРТ (магнитно-резонансной томографией), могут производить отличные снимки в местах опухоли. Эти наночастицы значительно ярче, чем органические краски и требуют только одного источника света для активизации. Это означает, что использование флуоресцентных квантовых точек может произвести более контрастное изображение за меньшую стоимость, чем нынешние органические красители, используемые как контрастные вещества. Тем не менее, обратная сторона заключается в том, что квантовые точки обычно сделаны из довольно токсичных элементов. Другое наносвойство, большое отношение площади поверхности к объёму, позволяет многим функциональным группам присоединяться к наночастице, что позволяет искать и присоединяться к определённым клеткам опухолей. Вдобавок, малый размер наночастиц (от 10 до 100 нанометров) позволяет им преимущественно скапливаться в местах опухолей (поскольку в опухоли есть нехватка эффективной лимфатической дренажной системы). Отличный вопрос для исследования — как сделать эти наночастицы, используемые для съёмок, полезнее в лечении рака. Для примера, возможно ли изготовить многофункциональные наночастицы, которые будут обнаруживать, снимать, а затем и лечить опухоль? Этот вопрос активно исследуется, ответ может обозначить будущее в лечении рака. Многообещающий новый способ лечения рака, который может однажды заменить радиацию и химиотерапию, приближается к клиническим испытаниям на людях. Терапия Kanzius RF присоединяет микроскопические наночастицы к раковым клеткам и затем «изжаривает» опухоли внутри тела с помощью радиоволн, которые нагревают только наночастицы и близлежащие (раковые) клетки. Сенсорные тестовые чипы, содержащие тысячи нанопроводов, способны обнаруживать протеины и другие биомаркеры, оставленные раковыми клетками, могут позволить обнаруживать и диагностировать рак на ранних стадиях и потребует лишь нескольких капель крови пациента.

Основные доводы в пользу использования доставки лекарств основаны на трёх фактах:

Исследователи из университета Райса под руководством проф. Дженнифера Веста, продемонстрировали использование нанооболочек диаметром 120 нм, покрытых золотом, для уничтожения раковых опухолей в мышах. Наночастицы могут быть нацелены на связывание с раковыми клетками при помощи соединения антител или пептидов с поверхностью нанооболочки. С помощью облучения зоны опухоли инфракрасным лазером, который проходит через плоть, не нагревая её, золото нагревается достаточно для смерти раковых клеток. Наночастицы селенида кадмия (квантовые точки) светятся при облучении ультрафиолетовым светом. Когда введены, они проникают внутрь раковых опухолей. Хирург может видеть светящуюся опухоль и использовать это как подсказку для более аккуратного удаления опухоли. В фотодинамической терапии частица помещается внутрь тела и освещается светом, идущим снаружи. Свет поглощается частицей, и если частица металлическая, свет нагреет частицу и окружающую ткань. Свет также может использоваться для производства высокоэнергетических молекул кислорода, которые будут химически реагировать и уничтожать большинство органических молекул рядом с ними (например, опухоль). Терапия является привлекательной по многим причинам. Она не оставляет «токсического следа» реагирующих молекул по всему телу (как при химиотерапии), поскольку сосредоточена только там, где есть свет и есть частицы. Фотодинамическая терапия имеет потенциал неинвазивной процедуры для лечения заболеваний, выростов и опухолей.

Медик
Схематическая иллюстрация показывает, как наночастицы и другие противораковые лекарства могут быть использованы для лечения рака.